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Identifying units of biological diversity is a major goal of organismal

biology. An increasing literature has focused on the importance of cryptic

diversity, defined as the presence of deeply diverged lineages within a

single species. While most discoveries of cryptic lineages proceed on a

taxon-by-taxon basis, rapid assessments of biodiversity are needed to

inform conservation policy and decision-making. Here, we introduce a pre-

dictive framework for phylogeography that allows rapidly identifying

cryptic diversity. Our approach proceeds by collecting environmental,

taxonomic and genetic data from codistributed taxa with known phylogeo-

graphic histories. We define these taxa as a reference set, and categorize

them as either harbouring or lacking cryptic diversity. We then build a

random forest classifier that allows us to predict which other taxa endemic

to the same biome are likely to contain cryptic diversity. We apply this frame-

work to data from two sets of disjunct ecosystems known to harbour taxa

with cryptic diversity: the mesic temperate forests of the Pacific Northwest

of North America and the arid lands of Southwestern North America.

The predictive approach presented here is accurate, with prediction accuracies

placed between 65% and 98.79% depending of the ecosystem. This seems

to indicate that our method can be successfully used to address ecosystem-

level questions about cryptic diversity. Further, our application for the prediction

of the cryptic/non-cryptic nature of unknown species is easily applicable

and provides results that agree with recent discoveries from those systems.

Our results demonstrate that the transition of phylogeography from a

descriptive to a predictive discipline is possible and effective.
1. Background
Delimiting and identifying independent lineages is critical not only for taxon-

omy, but also for understanding the processes leading to the diversification

of life, defining conservation strategies, and communicating among scientific

and non-scientific communities [1]. The discovery of biodiversity can be

impeded by the presence of cryptic diversity [2], where deep genetic divergence

within a nominal species is present but not accompanied by known fixed mor-

phological differences between sets of populations. Several factors have

stimulated a growing literature that discusses the importance of such cryptic

diversity. First, the prioritization of conservation efforts on a regional scale is

often determined by species richness and endemism, and the identification of

cryptic diversity is critical to estimating these parameters [3,4]. Second, the dis-

covery of cryptic diversity establishes evolutionarily significant units for

conservation [5,6]. Third, the discovery of cryptic diversity is critical to under-

standing anthropogenic biotic changes, invasions and ecosystem health [7].

Thus, cryptic diversity is a vital component of biological diversity [8,9], and
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Figure 1. (a) Range of the biomes investigated in this study. Marked areas indicate extent of the biome. (b) Distribution of probability of harbouring cryptic diversity
in the two datasets, and using the jackknife downsampling approach. Grey, non-cryptic taxa; dashed, cryptic taxa. PNW, Pacific Northwest; SAL, Southwestern arid
lands. (Online version in colour.)
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its discovery is central to documenting fundamental units in

ecology [10], evolution and conservation [2].

Several novel methods have recently been introduced to

assess the presence of independent lineages within taxa

that were originally described as a single species [11–14].

While the assumptions and methodological details of these

methods vary [15], each conducts lineage delimitation on

a species-by-species basis and thus requires a detailed phylo-

geographic investigation into each taxon. Such investigations

are time-consuming and expensive, and these costs limit

the number of systems that can be investigated. Given the

myriad threats to the Earth’s biodiversity [16–19] and

the difficulties inherent to the discovery of cryptic biodiver-

sity [20], biodiversity discovery should no longer proceed

on a taxon-by-taxon basis, but rather, rapid discovery and

characterization of biodiversity is needed [21].

The transition of phylogeography from a largely descrip-

tive to a predictive discipline will facilitate this goal. Here, we

introduce a novel predictive framework that uses existing

genetic data from previous phylogeographic studies (see

[22]), open-access taxonomic and species occurrence data

(e.g. GBIF) and climatic data (e.g. WorldClim). Cryptic diver-

sity may be predictable from analysis of environmental data

[8], and comparative phylogeographic research has demon-

strated broadly congruent patterns of cryptic diversity in

multiple species occupying the same fragmented biome

[22–24]. In such conditions, cryptic divergence may be

driven by random processes (e.g. genetic drift, mutations)

or by divergent selection [2,25]. Longer periods of isolation

are expected to increase ecological differentiation/divergence

[26,27], and this has been demonstrated in several taxa

[28,29].

The predictive approach to phylogeography proposed

here uses random forest (RF) classifications, and integrates

phylogeographic data with species occurrences, taxonomy

and climatic data to define a predictive classifier for the

rapid assessment of cryptic diversity. Our approach requires

(i) the identification of two sets of taxa on which to adjust and

train the classification: a set that contains cryptic diversity,
and one that lacks it, (ii) a database of georeferenced occur-

rences and (iii) ecological and taxonomic data associated

with the localities of species occurrences. Disjunct biomes in

which several cryptic and non-cryptic species have been

identified on either side of an isolating barrier are excellent

models to develop and test this RF predictive approach.
2. Material and methods
(a) Two disjunct biomes as models
(i) The mesic forests of the Pacific Northwest of North America
The Pacific Northwest of North America (PNW) supports the

world’s greatest extent of temperate coniferous rainforests

[30,31] that extends between 408 N and 538 N latitude along the

Pacific coast and the inland Northern Rocky Mountains

(figure 1a). This ecosystem is rich in endemic species, and

includes at least 150 plant, animal and fungal species that are dis-

junct with over 300 km of arid Columbia Basin shrub-steppe

between the coastal and inland portions of its distribution

[30–32]. Because of the degree of isolation between these disjunct

regions, conspecific populations from coastal and inland habitats

have received much attention [33,34], with studies demonstrating

that the system harbours substantial cryptic diversity (e.g. [35],

reviewed in [36]).

Numerous hypotheses have been proposed to explain the

origin of the disjunction (summarized by Brunsfeld et al. [37]).

They posit either persistence of inland rainforests throughout

the Pleistocene [30] or post-Pleistocene dispersal to the inland

rainforests. The first hypothesis predicts high cryptic diversity,

because of the hypothesized old age of the disjunction [37],

and indeed, phylogeographic investigations have revealed cryp-

tic diversity in taxa that were originally described as single,

disjunct species (e.g. [33,38]; see electronic supplementary

material, table S1). The alternative hypotheses deny the persist-

ence of inland Pleistocene refugia, instead positing the inland

dispersal of rainforest taxa after the Pleistocene (electronic sup-

plementary material, table S1). Because the latter invoke the

recent (post-Pleistocene) establishment of inland taxa, these

recent dispersal models predict a lack of cryptic diversity,

which has been shown in some studied taxa [33].

http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20161529

3

 on November 16, 2016http://rspb.royalsocietypublishing.org/Downloaded from 
(ii) Arid lands of Southwestern North America
The arid lands of Southwestern North America (SAL) include a

series of xeric areas that extend from the Southwestern United

States to northern Mexico [39], and contain the Sonoran, Chihua-

huan and the Baja California deserts. Although the area displays

strong endemism, the Baja California–Sonoran areas share many

species that are separated by the Colorado River and Gulf of

California ([40,41]; figure 1a). Geological data indicate that the

Baja Californian desert became isolated from the Sonoran

desert after the separation of the Baja Peninsula from the main-

land Sonoran region. Currently, the regions are isolated by the

Gulf of California, an oceanic incursion of around 300 km [40].

Several hypotheses have been proposed to explain the similar

composition of the two xeric areas. The first hypothesizes that

peninsular populations became isolated from continental popu-

lations following the formation of the Gulf of California

around 5 Ma [40]. Consistent with this, phylogeographic ana-

lyses of several disjunct species have shown strong divergence

between disjunct populations (reviewed by [42]; electronic sup-

plementary material, table S1), with cryptic species identified

on each side of the Gulf. Alternatively, it has been proposed

that some disjunct species were isolated in the Baja Californian

deserts and have only recently colonized the Sonoran region;

this hypothesis is consistent with the observation of several

xeric-adapted species that do not show genetic differentiation

between the two areas, and thus do not display cryptic diversity

(e.g. [40,43]; electronic supplementary material, table S1 [44]).
(b) Occurrence datasets
For the PNW, we used several published datasets ([15,33,38,

45–47]; electronic supplementary material, table S1). They

included tailed frogs (Ascaphus), Pacific giant salamanders

(Dicamptodon), the Van Dyke’s salamander complex (Plethodon
vandykei and P. idahonesis), water voles (Microtus richardsoni),
dusky willows (Salix melanopsis) and the blue-grey taildropper

slug (Prophysaon coeruleum). To these datasets, we also added

newly generated data for Chonaphe armata, a polydesmid

millipede (GenBank accessions KX904729 - KX904806).

For the SAL, we focused on the compilation of 14 bird,

mammal and amphibian taxa discussed by Zink [44]. Although

not exhaustive for this system, this list (electronic supplementary

material, table S1) is sufficient to demonstrate the general appli-

cability of our predictive approach, and has two other salient

features. First, approximately half of the taxa show cryptic diver-

sity across the Colorado River and half do not (electronic

supplementary material, table S1). Second, as in the PNW

system, some taxa harbouring cryptic diversity have been elev-

ated to species status based on the results of phylogeographic

studies (e.g. Peromyscus fraterculus; [48]).

For each taxon, we compiled occurrence localities from GBIF,

the primary literature and individual natural history collections

(i.e. private and museum collections). We gathered 8228

observed localities of taxa from the PNW (average of 1175

localities per species). We gathered 487 735 localities from

the SAL (average of 34 744 localities per species). Prior to

further use, data were curated, with conspecific repeated, non-

georeferenced localities or observations that fell clearly out of

the range of the species excluded from the dataset.
(c) Taxa categories
We characterized each taxon as containing cryptic diversity (i.e.

cryptic) or lacking cryptic diversity (i.e. non-cryptic) using two

analytical approaches. First, we calculated the posterior probabil-

ities of explicit phylogeographic models using an approximate

Bayesian computation (ABC) approach. By doing this, we ident-

ified the most probable phylogeographic scenario given the data.
Specifically, we evaluated three migration models (electronic

supplementary material, figure S1), which represent different

recent dispersal scenarios. The first two migration models con-

sisted of post-Pleistocene divergence with subsequent gene

flow either from east to west or from west to east. The third

migration model consisted of pre-Pleistocene divergence with

subsequent gene flow in both directions, and approximates a

scenario in which there was divergence in the Pliocene followed

by secondary contact. Finally, we compared the best of the

migration models with a model of pre-Pleistocene divergence

with no subsequent gene flow (ancient vicariance, AV; electronic

supplementary material, table S1). We used simulations to deter-

mine the rejection method, and a combination of summary

statistics that resulted in the correct model being selected consist-

ently for the ABC analyses (see electronic supplementary

material, S1 for more details). Data were simulated in ms [49]

with 100 001 draws from the prior to match the actual data for

each species under consideration, under the three migration

models. Summary statistics for the observed data were calculated

in DNAsp v. 5.1.0 [50]. A simple rejection step with a tolerance of

0.01 and the summary statistics p, Tajima’s D, p within

each population, and p between populations were used to

approximate the posterior probabilities of the models.

The second approach used Bayesian molecular clock analyses

to identify divergence times for the deepest nodes that span the

disjunction. We assumed that relatively old divergences coupled

with reciprocally monophyletic populations structured by geo-

graphical areas—i.e. inland versus coastal for the PNW; Baja

California versus Mexico and the Sonoran Desert for the SAL—

support the AV scenario. Alternatively, results pointing to

relatively young divergence events—i.e. dispersal events—and

non-reciprocally monophyletic populations suggest continuous

gene flow and, therefore, recent dispersal. We used BEAST

v. 1.8.2 [51] to infer topology and divergence times with mito-

chondrial or chloroplast sequence data for SAL and PNW taxa.

A model of sequence evolution for each taxon was selected

using DT-ModSel [52] (electronic supplementary material,

table S5 and see electronic supplementary material, S1 for more

details). The Markov chain Monte Carlo analysis was run for

100 million generations, sampling every 1000 generations, with

a random starting tree and strict molecular clock. Convergence

of all chains was visually assessed using TRACER v. 1.6 [53]

and assumed to reach stationarity when effective sample size

(ESS) values for all parameters were more than 200 (except for

Peromyscus; ESS . 30). We used TreeAnnotator [51] to discard

‘burn-in’ states and summarize all remaining sampled trees

(90 001 trees).

(d) Predictor variables
Because climate has been shown to be a good proxy for ecologi-

cal preferences [54], for each locality, we extracted climatic data

using the bioclimatic variables available in WorldClim [55], at

a resolution of 30 arc-seconds (approx. 1 km2). Owing to the

potential for correlation among these climatic variables, we

selected a subset of variables with low correlation (r2 , 0.7).

Thus, we conducted our analyses with eight climatic variables

in the PNW dataset (annual mean temperature, bio1; mean diur-

nal range, bio2; isothermality, bio3; maximum temperature of

warmest month, bio5; temperature annual range, bio7; annual

precipitation, bio12; precipitation seasonality, bio15; and precipi-

tation of driest quarter, bio17) and 10 in the SAL dataset (bio1;

bio2; bio3; bio7; mean temperature of wettest quarter, bio8;

mean temperature of driest quarter, bio9; bio12; precipitation of

driest month, bio14; bio15; and precipitation of warmest quarter,

bio18). These data manipulation steps were conducted in R using

several functions from the packages rgdal [56], dismo [57], biomod2
[58] and adehabitat [59]. Along with climatic variables, we also

used major taxonomic ranks (e.g. classes, phyla; electronic

http://rspb.royalsocietypublishing.org/
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supplementary material, table S1) as input in our classification

methodologies. For this, we associated each locality to the taxo-

nomic rank to which the species belong. This coarse approach

was developed as a proxy for the incorporation of major life-his-

tory traits that correlate with deep phylogeny into the predictive

framework. The taxonomic ranks used here are very coarse, and

as such, the life-history traits we refer to correspond to very gen-

eral classifications of life, such as the ability to photosynthesize

(e.g. rank ‘plant’), or general classes in the animal kingdom

that correlate with strongly divergent reproductive and develop-

mental strategies (e.g. ‘amphibian’ versus ‘bird’ versus

‘mammal’).
Proc.R.Soc.B
283:20161529
(e) Random forest analyses
Several multivariate classification approaches can be applied to

environmental and taxonomic variables. RF [60] is a powerful

method that can be applied to predicting the presence or absence

of cryptic lineages in species that co-occupy a disjunct biome.

This machine-learning approach is based on the use of decision

trees [61], which are used to classify and predict the assignment

of observations into the response categories of interest, in this

case, taxa that harbour cryptic diversity (which we will refer to

as cryptic) versus those that do not (which we will refer to as

non-cryptic). Each node in these decision trees represents a

dichotomization of the data, defined by a condition in one of

the predictor variables. The tree is grown (i.e. more nodes are

added) with the addition of more conditions, and splitting the

data until reaching the tips of the tree, the point where all obser-

vations are classified. When new data become available, novel

observations can be classified, using the existing classification

tree and the vector of predictor variables associated with those

data [61]. While in a decision-tree analysis only one decision

tree is built, in RF, the original full dataset is randomly boot-

strapped and the variables randomly selected, and a decision

tree is constructed for each bootstrapped dataset. The conditions

contained in the final RF classification represent the modes of the

conditions obtained in the full set of bootstrapped classification

trees. The ensemble nature of the RF decision trees accommo-

dates uncertainty and biases associated with the classification

process that is used for the construction of each individual tree.

Furthermore, the lack of distributional assumptions and the use

of a subset of variables in each splitting node result in several

advantages for classification trees over traditional methods

such as discriminant function analyses or linear discriminant

analyses (see for instance [62] for a discussion). RF has been

applied in ecology [62,63], bioinformatics [64], the health sciences

[65] and recently in statistical phylogeography [66].

We conducted the RFs analyses using the randomForest

function from the randomForest package [67] in R. We allowed

the RF function to construct 5000 decision trees using a

random selection of our localities (with two-thirds of the dataset

sampled with replacement to construct each decision tree) and

setting the m value to 3 (three variables randomly sampled as

candidates for each node). We assigned each specific locality

datum to the category cryptic or non-cryptic (electronic

supplementary material, table S1); this was the response vari-

able and was assigned based on the results of the analytical

approach described above (see §2c). As predictor variables, we

used the climatic and taxonomic variables mentioned above

(see §2d).

The RF method uses a subset of the data to train and con-

struct the classification tree and then assesses the accuracy of

the prediction on the ‘out of bag’ remainder of the observations

to cross-evaluate model performance. Along with this measure,

we apply a jackknife approach to test more explicitly the predic-

tive power of the RF approach. This allowed us to evaluate how

well the training dataset was able to predict presence/absence of
cryptic diversity for a taxon that was initially not used to build

the decision trees. For each run, we trained the model on all

taxa except one. Predictions were then made for the omitted

taxon. We then calculated the prediction accuracies of the

method, as (i) accuracyoverall ¼ (ntrue cryptic localities þ ntrue non-

cryptic localities)/ntotal predicted localities, (ii) accuracycryptic ¼ ntrue

cryptic localities/ntotal cryptic localities, (iii) accuracynon-cryptic ¼ ntrue

non-cryptic localities/ntotal non-cryptic localities.

(i) Tests of data quality and its effect on results
One potential issue associated with biological data is the effect

that an imbalanced representation of the different categories

could have on the RF decision trees constructed. For example,

in our case studies, the number of localities categorized as cryptic

versus non-cryptic were unequally represented in the dataset

(see electronic supplementary material, table S1). In this situ-

ation, it is possible that very heavily collected taxa/categories

could drive the RF function and bias the overall predictions.

Similarly, taxa/categories with few localities could also impinge

on accuracy, as they would not contribute very strongly to the

classification. To address this concern, we follow the recommen-

dations by Chen et al. [68] and use two resampling strategies to

evaluate how dataset balance and size affects the final predictive

assignment. In the first strategy, all species in the dataset were

resampled to obtain equal numbers of localities per species.

Based on the characteristics of the PNW and SAL datasets, we

resampled 100 times different numbers of localities: 141, 1500,

4500 and 9000 localities for the PNW dataset, and 1000, 5000,

13 500 and 25 000 for the SAL dataset. In the second strategy,

we downsampled the number of observations in the majority cat-

egory (i.e. cryptic taxa) to the number of observations in the

minority (non-cryptic) taxa. To determine the feasibility of

using existing data to predict the likelihood that a species har-

bours cryptic diversity, we then evaluated how the prediction

accuracy changed as a function of each resampling approach.

All dataset manipulations were done using custom scripts in R

(see dryad repository).

( f ) Predicting unknown taxa
For the PNW, we selected the red alder (Alnus rubra), the western

red cedar (Thuja plicata) and the robust lancetooth snail

(Haplotrema vancouverense). For the SAL, we selected the Gila

woodpecker (Melanerpes uropygialis), Costa’s hummingbird

(Calypte costae) and the desert woodrat (Neotoma lepida). To pre-

dict the presence or absence of cryptic diversity in these

species, we searched, downloaded and curated localities from

GBIF, the bibliography and collection databases. To perform

this selection, we used only localities that had been already geo-

referenced (i.e. geographical coordinates were already present),

excluding those that fell outside of the range of the species

(e.g. georeferencing errors) and those that were obviously

wrong. We then applied the RF-generated classification

described above for the appropriate (PNW or SAL) dataset,

using the predict function of the R package randomForest. This

provided a prediction for the presence or absence of cryptic

diversity in the unknown taxa.
3. Results and discussion
(a) General overview
Phylogeography is a prolific discipline, with nearly 40 000

investigations published to date (Web of Science search of

‘phylogeograph*’ in title, abstract or keywords, 6 January

2016) on species collected from more than 4.8 � 106 localities

[69]. These studies represent a tremendous resource for the

http://rspb.royalsocietypublishing.org/
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biodiversity sciences because they include the samples of

genetic diversity from across the range of the focal taxon.

However, the information contained in these studies is diffi-

cult to access and cannot easily be generalized. Although

comparative phylogeographic investigations are abundant

and can effectively investigate regional diversification

[33,40,70], they do not reflect global patterns.

In this study, we presented a new method that syn-

thesizes data from multiple phylogeographic studies with

other environmental and taxonomic information to predict

the presence (or absence) of cryptic diversity within unstu-

died taxa. By testing the method with real data from two

disjunct North American biomes, we demonstrate that cli-

matic and taxonomic data can be used to predict the

presence of cryptic diversity, and suggest that this method

may be widely applicable to any ecosystem for which partial

information about cryptic diversity (or the lack thereof)

exists. Given the rapidly increasing number of phylogeo-

graphic studies, the potential application of this approach is

high, and it may provide the means for phylogeography to

transition into a predictive discipline.

Our predictive approach to phylogeography consists of

several steps (figure 2): (i) compiling an occurrence dataset

for taxa present in an ecosystem that either harbour or lack

cryptic diversity, (ii) categorizing the taxa as cryptic or non-

cryptic using phylogeographic methods, (iii) identifying

appropriate variables (environmental, taxonomic, etc.) to

construct classification trees with RF, (iv) adjusting an RF

classification using resampled and downsampled datasets if

the datasets are imbalanced, (v) using the resulting RF to pre-

dict presence/absence of cryptic diversity in taxa for which

the genetic structure is unknown.
(b) Dataset compilation and data structure
Both the PNW and the SAL have a disjunct distribution

(figure 1a) and in some taxa, the disjunction has been

shown to correspond to the presence of cryptic diversity
[37,42]. In both these ecosystems, the identification of an

ancient divergence event has been associated with the recog-

nition of cryptic diversity, whereas recent colonization of

one of the disjunct areas has been linked with the absence

of cryptic diversity, making these two biomes ideal for testing

the utility of the here-presented method. Of all occurrence

records, 1919 and 95 247 passed the quality test for the

PNW and SAL taxa, respectively (electronic supplementary

material, table S1). Not surprisingly, the occurrence data

were very imbalanced in both datasets, with a minimum of

33 and 643 localities per taxon in the PNW and SAL datasets,

respectively, and a maximum of 610 and 41 672 localities in

the PNW and SAL datasets, respectively.

(c) Categorizing the training taxa
When using the demographic (ABC) and phylogenetic (Baye-

sian molecular clock) analyses to classify our reference set of

taxa (i.e. the training dataset) into those that harbour and

those that lack cryptic diversity, our phylogeographic results

agreed with those obtained from previous studies [33,40,44].

Indeed, we identified several species that harbour cryptic

diversity in each biome (electronic supplementary material,

tables S2–S3). Specifically, our ABC analyses for these species

identified the AV phylogeographic model as the most prob-

able given the data (electronic supplementary material,

table S2), and displayed old divergences and reciprocal

monophyly among the disjunct regions (molecular clock ana-

lyses; electronic supplementary material, table S3). Therefore,

the use of these phylogeographic methods appears to be an

appropriate and objective approach to standardize the initial

class assignment.

(i) Pacific Northwest taxa
Four of the seven species were identified in our phylogeo-

graphic analyses as non-cryptic. In those species, the ABC

analyses identified a migration model as the one with the

highest posterior probability (electronic supplementary

http://rspb.royalsocietypublishing.org/


Table 1. Prediction accuracies (in %), based on the full, the downsampled
and the resampled datasets. Values indicate overall and category-based
(i.e. cryptic versus non-cryptic) accuracies.

dataset overall cryptic non-cryptic

PNW

full 98.78 98.52 100.00

downsampling 98.78 98.52 100.00

resampling 141 77.52 83.14 51.78

resampling 1500 98.78 98.52 100.00

resampling 4500 98.78 98.52 100.00

resampling 9000 98.78 98.52 100.00

SAL

full 56.56 69.28 23.85

downsampling 64.44 62.38 69.96

resampling 1500 62.86 61.23 67.24

resampling 5000 64.72 63.68 67.49

resampling 13 500 64.10 62.57 68.23

resampling 25 000 65.38 64.36 68.13
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material, table S2) and the Bayesian molecular clock approach

showed no reciprocal monophyly between disjunct

populations in all species but C. armata (electronic sup-

plementary material, table S3 and figures S6–S13). Three

amphibian taxa, Plethodon, Dicamptadon and Ascaphus, were

identified as cryptic. In these taxa, the AV model had the

highest posterior probability (electronic supplementary

material, table S2) and their disjunct populations were reci-

procally monophyletic (electronic supplementary material,

table S3).

(ii) Southwest arid lands taxa
Two of the four taxa analysed did not display cryptic diver-

sity. In these datasets, the migration models with recent

divergence events had the highest posterior probabilities

(electronic supplementary material, table S2) and their dis-

junct populations were not reciprocally monophyletic

(electronic supplementary material, table S3 and figures

S2–S5). Both mammalian taxa were identified as cryptic by

our phylogeographic analyses. For these taxa, the AV

model had the highest posterior probability (electronic sup-

plementary material, table S2) and the Bayesian molecular

clock approach indicated reciprocal monophyly among

disjunct populations (electronic supplementary material,

table S3).

(d) Random forest data classification
In both datasets, we built an RF classification [60] of the cryp-

tic and non-cryptic classes, using bioclimatic and taxonomic

variables as classifiers, and we evaluated the classification

accuracies with a jackknife approach. Because, in our data-

sets, the two classes were imbalanced, we tested the effect

of that data structure by performing four resampling

approaches and one downsampling approach. Our results

demonstrate that the classifications are accurate, and that

the accuracy improves when classifications are built using

balanced datasets. This result agrees with previous studies

on the use of RF [68], which indicated that data imbalance

can have pervasive effects on the classification results. Our

results strongly suggest that data balancing manipulation

should be done when applying our approach.

(i) Random forest on the full datasets
In the PNW dataset, the RF approach successfully predicted

the presence or absence of cryptic diversity for most taxa

(overall accuracy of 98.79%; table 1). Further, the RF accu-

racies per category were balanced: 98.52% for species that

harbour cryptic diversity and 100% for those that do not.

However, although the RF was accurate overall, the pre-

diction for one taxon, C. armata, did not agree with our

expectations (electronic supplementary material, table S4).

The most important variables contributing to the classifi-

cation between the cryptic and non-cryptic groups were the

taxonomic rank and annual mean temperature (bio1).

In the case of the SAL, the RF only reached an accuracy

of 56.56% (table 1). Predictive accuracies were lower for the

non-cryptic than the cryptic categories: 23.85% and 69.28%,

respectively (table 1). Among all studied taxa, six were

wrongly predicted (electronic supplementary material,

table S4). The most important variables contributing to the

classification between the cryptic and non-cryptic groups
were the taxonomic rank, the mean annual temperature

(bio1) and precipitation during the warmest quarter (bio18).

(ii) Random forest on balanced datasets
In the PNW dataset, downsampling the data did not affect the

results obtained with the full dataset (overall accuracy of

98.78%, table 1). Although the prediction accuracies generally

increased for individual taxa (electronic supplementary

material, table S4 and figure S15), the overall accuracy did not

change between the full and most resampled datasets (table 1).

In the case of the SAL dataset, the downsampling approach

improved the overall prediction accuracy (64.44%) compared

with the full dataset (table 1), and could correctly predict 11 of

the 14 taxa (electronic supplementary material, table S4 and

figure S16). The improvement was likely due to reduced var-

iance in prediction accuracies between categories. In particular,

the non-cryptic category saw a strong increase in the prediction

accuracy (23.85% in the full dataset, 69.96% in the downsampled

versus 68.23% in the resampled one; table 1), with only a small

loss of accuracy in the cryptic category.

(iii) Overall evaluations
When the sampling was balanced and the sampling size

increased, our analyses demonstrated moderate to high pre-

diction accuracy (table 1 and electronic supplementary

material, S4). This method is thus useful for predicting

cryptic diversity and performs well on different types of

datasets. Because the RF method does not have any distribu-

tional assumptions [60], it will be useful in biodiversity

questions, especially when compared with other distri-

bution-based approaches (see electronic supplementary

material). Interestingly, the error rate in RF is known to

increase with correlation of decision trees in the forest [60],

and this behaviour is likely one characteristic driving the

differences in the accuracies obtained when the resampling

approaches are applied. When the number of localities is

small or some taxa are overrepresented, the decision trees

http://rspb.royalsocietypublishing.org/
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are more likely to be correlated, because the same localities

may be resampled multiple times (with small sample sizes)

and/or the amount of information available will be much

larger for some taxa than for others (with imbalanced sam-

plings). Thus, balancing and increasing the number of

samples per species directly increases the overall and cat-

egory accuracies, and diminishes variation in the calculated

accuracy (table 1, see also [68]). By using a combination of

RF and resampling approaches, we were able to balance the

predictive powers of the two categories and generate

unbiased predictions (i.e. very high accuracy in the prediction

of both categories).

Although the overall results are promising, some predic-

tions disagreed with previous expectations. For example, in

the PNW dataset, RF consistently predicted C. armata as cryp-

tic (electronic supplementary material, table S4), and because

there was disagreement in the results between the ABC

(electronic supplementary material, table S2) and BEAST (elec-

tronic supplementary material, table S3) approaches, we

cannot properly assess the accuracy of the RF prediction for

that taxon. The differences between the two analytical

methods may be due to a lack of genetic signal in the dataset,

and/or to the fact that genetic data for this taxon included

localities from regions absent from the other taxa (see elec-

tronic supplementary material, S1 for further discussion). To

clarify this prediction, we plan to collect additional molecular

data for that taxon. In the SAL dataset, three of the 14 species

were not correctly predicted (electronic supplementary

material, table S4). However, cryptic diversity in that dataset

was mostly defined using previously published classifications

by the authors (molecular data unavailable).

The results of the jackknife resampling suggest that our

proposed method performs differently in the two biomes

investigated here. These differences could be due to either

methodological or biological grounds. Methodologically, it

can be argued that the set of variables used to build the RF

classification functions may contribute differently to sorting

lineages harbouring or not harbouring cryptic diversity in

the two biomes. For instance, while climate and taxonomy

may be very appropriate to capture the differences between

cryptic and non-cryptic species in the PNW, they may be

less appropriate to do so for the SAL taxa. Using those vari-

ables in such a situation could lead to poor classifications,

lack of model generalizability and eventually reduced predic-

tion accuracy (see a thorough discussion in [71]). For this

reason, the inclusion of other biologically relevant variables,

such as modes of dispersal, generation times, population

sizes or morphological characters, may strongly increase the

predictive power of the approach, and this line will be

explored in future studies. The differences among the results

for the two biomes may also be due to biological grounds.

Indeed, although the two biomes are disjunct because of an

important dispersal barrier, these barriers may not be equiv-

alent. While in the PNW the barrier is virtually continuous

and broad (i.e. hundreds of kilometres of unsuitable habitat),

this is not the case for the SAL, where the disjunct popu-

lations may come into contact along the Colorado River, a

relatively permeable barrier. This may have implications for

the number of dispersal events and potential for ecological

differentiation among the disjunct taxa. A second explanation

relates to this: in this work, we used climate and taxonomy as

a proxy for the ecology and biology of taxa. This entails the

assumption that cryptic taxa harbour ecological differences
from their non-cryptic counterparts, and that it is possible

to use those differences to classify and predict cryptic from

non-cryptic entities. In this framework, it is possible that

taxa from the PNW dataset are more ecologically different

from those from the SAL. Such a situation would cause the

RF approach to be more accurate in the PNW than the

SAL dataset. An evaluation of ecological (i.e. climatic)

differentiation and niche occupancy in the two datasets pro-

vides some support for this interpretation (see electronic

supplementary material, S1 and figure S17).

(e) Predicting diversity in unknown taxa
To demonstrate the application of our method, we used the RF

approach to predict the presence or absence of cryptic diversity

in a set of taxa for which the presence of cryptic diversity has

not been assessed with genetic data, so that we could prioritize

future work. We assessed three taxa per biome; the three taxa

from the PNW (i.e. red alder Alnus rubra, Western red cedar

Thuja plicata and robust lancetooth Haplotrema vancouverense)

were predicted to lack cryptic diversity with relatively high

probabilities (98.06%, 97.91% and 98.24%, respectively). Two

of the three taxa selected from the SAL (Costa’s hummingbird,

C. costae and the desert woodrat, N. lepida) were predicted

to contain cryptic diversity, whereas the Gila woodpecker

M. uropygiales was predicted to lack cryptic diversity

(55.28%, 68.48% and 51.23%, respectively). Interestingly,

N. lepida has been recently shown to possess cryptic diversity

based on published revisionary data [72].
4. Conclusion
Our results represent the first attempt at predictive phylogeo-

graphy as an explicit eco-evolutionary discipline. The

RF-based approach introduced here holds a great deal of

promise for predicting cryptic diversity in biomes where

there has been at least some sampling effort, and where

other unsampled lineages share those same distributional

patterns. One of the direct applications of this approach is

allowing the prioritization of additional efforts to discover

and describe cryptic species. Further, because our method

is computationally efficient, once the presence (or absence)

of cryptic diversity of the unknown taxa has been predicted

and verified with molecular means, these new taxa can be

integrated into an updated training dataset and the RF classi-

fication rebuilt. This way, the RF classification is constantly

informed when new data for the biome becomes available,

which should increase its predictive accuracy.
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